. . . .

. . ..

Bis(trimethylsilyl)phosphinodithioformates, the Phosphorus Analogues of Dithiocarbamates; X-Ray Structures of $[Zr(cp)_2(Cl)(\eta^2-S_2CPR_2)]$ and its Thermolysis Product $[{Zr(cp)_2(\mu-S)}_2]$ (cp = η -C₅H₅, R = SiMe₃)†

Evamarie Hey,^a Michael F. Lappert,^a Jerry L. Atwood,^b and Simon G. Bott^b

^a School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

^b Department of Chemistry, University of Alabama, Alabama 35486, U.S.A.

Carbon disulphide inserts under ambient conditions into the Zr–P bond of $[Zr(cp)_2(PR_2)X]$ [$cp = \eta$ - C_5H_5 , $R = SiMe_3$] to yield $[Zr(cp)_2(\eta^2-S_2CPR_2)X]$ [X = Cl (**1a**) or Me (**1b**)] (having the novel phosphinodithioformato ligand, a phosphorus analogue of the dithiocarbamate), which upon heating affords $[{Zr(cp)_2(\mu-S)}_2]$ (**3**) {also obtained from S_8 and $[Zr(cp)_2(PR_2)X]$ (X = Me or PR_2)}; the ZrSCS and ZrSZrS rings in (**1a**) and (**3**) are planar and the P environment in (**1a**) is pyramidal, with <Zr–S> 2.686(8) (**1a**) and 2.483(3) Å (**3**) and SZrS' 63.4(2) (**1a**) and 89.5(2)° (**3**).

Whereas the co-ordination chemistry of the dithiocarbamato ligand $\overline{S}_2CNR^1R^2$ has been much explored, virtually nothing is known of the phosphorus analogue. We now report the synthesis of two such complexes of Zr^{IV} , of formula $[Zr(cp)_2\{\eta^2-S_2CPR_2\}X]$ [cp = η -C₅H₅, R = SiMe₃, and X = Cl (1a) or Me (1b)]. The X-ray structure of one of them, (1a), confirms the bidentate nature of the bonding (Figure 1), which is also inferred from i.r. data on compounds (1) (Scheme 1).

The orange complexes (1) were obtained by the facile insertion of carbon disulphide into the Zr–P bond of the appropriate recently discovered¹ bis(trimethylsilyl)phosphidozirconium complex [Zr(cp)₂(PR₂)X] [X = Cl (2a) or Me (2b); reaction i in Scheme 1]. They were isolated in high yield by crystallisation from n-C₅H₁₂–PhMe (1a) or (at -30 °C) n-C₅H₁₂ (1b). Attempts similarly to insert CO₂ or SO₂ into the ZrP bonds of complexes (2) yielded mixtures of products containing Zr–O bonds (i.r.), while CO did not react under ambient conditions with (2a).

Attempts to determine the m.p.s of complexes (1) showed that they turned orange-red at *ca*. 60 °C (1a) or 105 °C (1b) and thereafter appeared to decompose. N.m.r. spectra in $[^{2}H_{8}]$ toluene were recorded, but there was evidence of decomposition. For complex (1a) the initial step (iia in Scheme 1) appeared to involve a 1,3-SiMe₃ migration² to afford the isomer (1a') (proposed on the basis of i.r. and ¹H n.m.r. spectra), which subsequently on heating in PhMe eliminated SiClMe₃ to yield (iib in Scheme 1) the hot toluene-soluble dimeric zirconocene(IV) sulphide [{Zr(cp)₂-(µ-S)}₂] (3) and a yellow intractable solid believed to be a

* No reprints available.

Scheme 1. Abbreviations: $cp = \eta - C_5H_5$, $R = SiMe_3$, thf = tetrahydro $furan. Reagents and conditions: i, <math>CS_2$, $n-C_5H_{12}$, 25 °C, 1 h; ii, PhMe, 130 °C, 2 h, then 25 °C at 10^{-1} Torr; iii, excess S_8 , thf, 25 °C, 1 day; iv, $\frac{1}{8}S_8$, $n-C_6H_{14}$, 25 °C [excess of (4) remained in solution]. N.m.r. chemical shift (δ) data (C_7D_8): (1a) ¹H (-50 °C): 5.71s (cp), 0.34d (SiMe_3) [⁴J(³¹P¹H) 3.6 Hz], and ³¹P (30 °C): -13.6s; (1b) ¹H (30 °C): 5.61s (cp), 0.46d (SiMe_3) [⁴J(³¹P¹H) 5 Hz], 0.27s (Me), and ³¹P (30 °C): -12.1s.

Figure 1. X-Ray structure and atom numbering scheme for $[Zr(\eta-C_5H_5)_2(Cl)\{\eta^2-S_2CP(SiMe_3)_2\}]$ (1a). Selected bond distances and angles are as follows: Zr–S(1) 2.733(7), Zr–S(2) 2.640(8), S(1)–C(7) 1.68(3), S(2)–C(7) 1.64(3), C(7)–P 1.87(2), <P–Si> 2.27(2) Å, S(1)–Zr–S(2) 63.4(2), Zr–S(1)–C(7) 87.7(8), Zr–S(2)–C(7) 91.9(9), C(7)–P–Si(1), 96.8(8), C(7)–P–Si(2) 107.6(9), and Si(1)–P–Si(2) 108.4(4)°.

polymeric phosphathioketene $(S=C=PR)_n$.

The zirconocene(iv) sulphide (3) was also accessible from $[Zr(cp)_2(PR_2)X] [X = Cl (2a) \text{ or } X = PR_2 (4)]$,¹ by treatment with elemental sulphur at ambient temperatures, iii or iv in Scheme 1. X-Ray quality crystals were obtained from hot toluene.

The bis(trimethylsilyl)phosphinodithioformato ligand $\overline{S}_2CP(SiMe_3)_2$ in complex (1a) (Figure 1)‡ is bidentate. The most direct comparison with a dithiocarbamato analogue relates to $[Zr(cp)_2(Cl)(\eta^2-S_2CNEt_2)]$ (5).³ Both have a planar ZrSCSE framework (E = P or N) and similar endocyclic parameters [for (5): <Zr-S> 2.723(2), <C-S> 1.710(5) Å, and S-Zr-S' 64.6(0)°]. However, whereas N is trigonal planar in (5), P in (1a) is pyramidal (the sum of bond angles at P 307°); the PSi₂ plane is roughly orthogonal (78.7°) to the ZrSCSP plane in (1a), while the atoms ZrSCSNC₂ in (5) are coplanar. The C=S double bond character is clearly greater in (1a) than (5), while the PC bond in (1a) is more nearly a single bond than the N=C in (5).

Compound (3) (Figure 2)‡ was previously obtained either (i) in low yield from $[Zr(cp)_2Cl_2]$ and $H_2S + NEt_3$ (and assumed to be a dimer from its mass spectrum),⁴ or (ii) from the dichloride, Li[BHEt₃], and S₈ in thf;^{5a} and an analogue was also made photochemically from $[Zr(\eta-C_5H_4Bu^t)_2(\eta-C_4H_8)]$ and S₈.^{5b} However, the presence of the ZrSZrS core for (3) is surprising in the light of the X-ray-authenticated trimer for the O-analogue $[{Zr(cp)_2(\mu-O)}_3]$.⁶ Other Zr compounds containing Zr–S bonds include $[Zr(\eta-C_5Me_5)_2-(S_3 \text{ or } 5)]$,⁴ but the only crystallographically characterised compounds containing S²⁻ are $[Zr_3(\mu_3-S)_2(\mu_2-S)(\mu_2-SBu^t)_2-$

‡ Crystal data. (1a), C₁₇H₂₈ClPS₂Si₂Zr, orthorhombic, space group $P2_1/c$, a = 7.159(9), b = 21.574(9), c = 15.925(6) Å, U = 2460 Å³, Z = 4, $D_c = 1.38$ g cm⁻³, $\mu = 8.23$ cm⁻¹, 653 observed reflections, $2\theta_{max}$. = 44°, R = 0.047, R' = 0.051; (3), C₂₀H₂₀S₂Zr₂, monoclinic, space group $P2_1/n$, a = 8.393(5), b = 8.245(2), c = 13.666(9) Å, $\beta = 94.75(5)^\circ$, U = 942 Å³, Z = 2, $D_c = 1.79$ g cm⁻³, $\mu = 13.03$ cm⁻¹, 1065 observed reflections, $2\theta_{max} = 44^\circ$, R = 0.030, R' = 0.038 [Mo- K_{α} radiation, $\lambda = 0.71069$ Å, T = 295 K]. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 2. X-Ray structure and atom numbering scheme for $[{Zr(\eta-C_5H_5)_2(\mu-S)}_2]$ (3). Selected bond distances and angles are as follows: Zr-S 2.480(2) and 2.487(2) Å, S · · · S' 3.50, Zr · · · Zr' 3.53 Å, S-Zr-S' 89.5(2)°.

 $(BH_4)_4(thf)_2]$ (6),⁷ [Zr₆(μ_3 -S)₆(μ_2 -SBu^t)₄(BH₄)₈(thf)₂], and [Zr₃(μ_3 -S)(μ_3 -SBu^t)(μ_2 -SBu^t)₃(SBu^t)₆] (7);⁸ the mean Zr–S distances are 2.594 in (6) and 2.601 Å in (7). The short Zr–S distances in (3), as well as its turquoise colour, may be indicative of delocalised π -electrons in the (ZrS)₂ ring.

Insertion of the heterocumulene CS₂ into an M–NR₂ bond is well known to yield a dithiocarbamate, but there appear to be only very few previous examples of related M–PR₂/CS₂ reactions, with these restricted to main group elements, *e.g.*, $M = Sn^{IV.9}$ By contrast, insertion of CS₂ into many transition metal M–X bonds often affords metallodithioformates [M{C(S)SX}L_n]. The complex [Hf(η -C₅Me₅)Cl₂(PBu^t₂)] reacted readily with CO under ambient conditions to yield [Hf(η -C₅Me₅){ n^2 -C(O)PBu^t₂}Cl₂].¹⁰

Added in proof: Compound (3) has been independently prepared {from $[2r(cp)_2(CO)_2]$ and H_2S }, and its X-ray structure determined (with very similar results to those reported herein).¹¹

We thank the Verband der Chemischen Industrie for providing a Liebig-Stipendium for Dr. E. Hey, and S.E.R.C. and N.S.F. for other support.

Received, 8th September 1986; Com. 1288

References

- 1 E. Hey, M. F. Lappert, J. L. Atwood, and S. G. Bott, J. Chem. Soc., Dalton Trans., to be submitted.
- 2 For 1,3-trimethylsilyl rearrangements (from Si to O), see e.g., A. G. Brook, J. Organomet. Chem., 1986, 300, 21; L. Weber, K. Reizig, R. Boese, and M. Polk, Angew. Chem., Int. Ed. Engl., 1985, 24, 604.
- 3 M. E. Silver, O. Einstein, and R. C. Fay, *Inorg. Chem.*, 1983, 22, 759.
- 4 A. Shaver and J. M. McCall, Organometallics, 1984, 3, 1823.
- 5 (a) G. Tainturier, B. Gautheron, and M. Fahim, J. Organomet. Chem., 1985, 290, C4; (b) G. Erker, T. Mühlenbernd, R. Benn, A. Rufińska, G. Tainturier, and B. Gautheron, Organometallics, 1986, 5, 1023.
- 6 G. Fachinetti, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Am. Chem. Soc., 1979, 101, 1767.
- 7 D. Coucouvanis, R. K. Lester, M. G. Kanatzidis, and D. P. Kessissoglou, J. Am. Chem. Soc., 1985, 107, 8279.
- 8 D. Coucouvanis, A. Hadjikyriacou, and M. G. Kanatzidis, J. Chem. Soc., Chem. Commun., 1985, 1224.
- 9 Cf., M. F. Lappert and B. Prokai, Adv. Organomet. Chem., 1967, 5, 225.
- 10 D. M. Roddick, B. R. Santarsiero, and J. E. Bercaw, J. Am. Chem. Soc., 1985, 107, 4670.
- 11 F. Bottomley, D. F. Drummond, G. O. Egharevba, and P. S. White, *Organometallics*, 1986, 5, 1620.